8 research outputs found

    Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer <it>Brachionus plicatilis</it>, a cryptic species complex consisting of at least 14 closely related species.</p> <p>Results</p> <p>We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called <it>B</it>. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence.</p> <p>Conclusions</p> <p>Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.</p

    Cut-offs and response criteria for the Hospital Universitario la Princesa Index (HUPI) and their comparison to widely-used indices of disease activity in rheumatoid arthritis

    Get PDF
    Objective To estimate cut-off points and to establish response criteria for the Hospital Universitario La Princesa Index (HUPI) in patients with chronic polyarthritis. Methods Two cohorts, one of early arthritis (Princesa Early Arthritis Register Longitudinal PEARL] study) and other of long-term rheumatoid arthritis (Estudio de la Morbilidad y Expresión Clínica de la Artritis Reumatoide EMECAR]) including altogether 1200 patients were used to determine cut-off values for remission, and for low, moderate and high activity through receiver operating curve (ROC) analysis. The areas under ROC (AUC) were compared to those of validated indexes (SDAI, CDAI, DAS28). ROC analysis was also applied to establish minimal and relevant clinical improvement for HUPI. Results The best cut-off points for HUPI are 2, 5 and 9, classifying RA activity as remission if =2, low disease activity if >2 and =5), moderate if >5 and <9 and high if =9. HUPI''s AUC to discriminate between low-moderate activity was 0.909 and between moderate-high activity 0.887. DAS28''s AUCs were 0.887 and 0.846, respectively; both indices had higher accuracy than SDAI (AUCs: 0.832 and 0.756) and CDAI (AUCs: 0.789 and 0.728). HUPI discriminates remission better than DAS28-ESR in early arthritis, but similarly to SDAI. The HUPI cut-off for minimal clinical improvement was established at 2 and for relevant clinical improvement at 4. Response criteria were established based on these cut-off values. Conclusions The cut-offs proposed for HUPI perform adequately in patients with either early or long term arthritis

    Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy

    Get PDF
    Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size)
    corecore